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Abstract
In this paper we study the charge and spin currents transported by the elementary
excitations of the one-dimensional Hubbard model. The corresponding current
spectra are obtained by both analytic methods and numerical solution of the
Bethe-ansatz equations. For the case of half-filling, we find that the spin-triplet
excitations carry spin but no charge, while charge η-spin-triplet excitations carry
charge but no spin, and both spin-singlet and charge η-spin-singlet excitations
carry neither spin nor charge currents.

1. Introduction

Recently, there has been a renewed interest in the unusual transport and spectral properties
of nanotubes, ballistic wires, and quasi-one-dimensional (1D) compounds [1, 2]. Quantum
effects are strongest at low dimensionality, leading to unusual phenomena such as charge–spin
separation at all energies [2] and persistent currents in mesoscopic rings [3]. Thus, the further
understanding of the transport of charge in low-dimensional correlated systems and materials
is a topic of high scientific interest.

There is numerical evidence of a fundamental difference between the transport properties
of integrable and nonintegrable 1D interacting quantum systems: at finite temperatures, T > 0,
the integrable systems behave as ideal conductors in the metallic quantum phases and as ideal
insulators in the insulating phases, with the concepts of an ideal insulator and conductor
defined in [4]. In contrast, the nonintegrable 1D interacting systems are generic conductors
and activated ones in the metallic and insulating phases, respectively. While in the trivial case
of 1D integrable systems whose Hamiltonians commute with the current operator the ideal
insulating and conducting behaviors are easy to confirm, there is the expectation that such ideal
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behaviors might also occur in 1D integrable quantum systems whose Hamiltonian does not
commute with that operator, such as the 1D Hubbard model [5–7]. However, the studies of [8]
rely on the generalization of the thermodynamic Bethe-ansatz equations introduced in [7] to
the model in the presence of a vector potential [9] and seem to reveal that for half-filling the
1D Hubbard model does not remain an ideal insulator for T > 0, in contrast to the general
predictions and expectations of [4].

Solvable lattice models such as the 1D Hubbard model [5–7, 10] and the XXZ chain [11]
are often used as toy effective models for the study of the unusual properties of quasi-1D
compounds [12, 13]. Although the 1D Hubbard model was diagonalized long ago [6, 7] by
means of the coordinate Bethe-ansatz (BA) [14, 15], the involved form of BA wavefunctions
has prevented the full calculation of dynamic response functions. The study of the asymptotics
of the correlation functions and of the low-energy dynamical properties was performed
by combining the BA solution with other methods, such as conformal-field theory [16],
bosonization [17, 18], the pseudo-particle formalism [19], and scaling methods [20].

In this paper, we study the charge and spin currents carried by the elementary low-energy
and finite-energy excitations of the 1D Hubbard model. The paper is organized as follows: in
section 2 we summarize the basic information about the model and the BA solution needed
for our study; the energy and current spectra of the elementary excitations is the subject of
section 3. Finally, in section 4 we present the concluding remarks.

2. The model and its Bethe-ansatz solution

The Hamiltonian of the 1D Hubbard model on a periodic Na -site chain reads

H = −t
∑

j, σ

(c†
j, σ c j+1, σ + c†

j+1, σ c j, σ ) + U
∑

j

(n j,↑ − 1/2)(n j,↓ − 1/2), (1)

where the operator c†
j, σ (and c j, σ ) creates (and annihilates) an electron of spin projection σ

at the site of index j = 1, 2, 3, . . . , Na and n j, σ = c†
j, σ c j, σ is the number operator at the

same site. We use units of lattice constant one such that L = Na , where L is the system
length. We denote the electron number and the spin-projection σ electron number by N and
Nσ , respectively, such that N = [N↑ + N↓]. Moreover, we denote the state spin and η-spin
values by S and η, respectively.

The model as written in equation (1) has both a spin and an η-spin SU(2)

symmetry [21–24]. The generators of the η-spin symmetry are given by

η =
L∑

j=1

(−1) j c j↑c j↓, η† =
L∑

j=1

(−1) j c†
j↓c†

j↑,

ηz = 1
2

L∑

j=1

(n j↓ + n j↑) − 1
2 L, [η, η†] = −2ηz,

[η, ηz] = η, [η†, ηz] = −η†.

(2)

The global symmetry of the model (1) corresponding to these two SU(2) symmetries is SO(4),
since half of the irreducible representations of SU(2)

⊗
SU(2) are excluded. The BA solution

refers to the Hilbert subspace spanned by the lowest-weight states (LWSs) of both the spin and
η-spin algebras. The subspace which is not associated with such a solution is spanned by the
energy eigenstates obtained by applying to the LWSs one of the off-diagonal generators of the
corresponding two algebras [25].
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The charge and spin current operators of the model read [19]

J ρ = −ei t
∑

σ

L∑

j=1

(c†
jσ c j+1σ − c†

j+1σ c jσ )

J σz = − 1
2 i t

∑

σ

L∑

j=1

σ(c†
jσ c j+1σ − c†

j+1σ c jσ ).

(3)

In order to calculate the expectation values of the charge and spin current operators it is
convenient to consider a uniform vector potential Ax �ex , which modifies the hopping term along
the chain by the usual Peierls phase factor, t → t exp(±iφσ/L). Following such a procedure,
the Hamiltonian becomes

H = −t
∑

j,σ

(c†
jσ c j+1σ eiφσ /L + c†

j+1σ c jσ e−iφσ /L ) + U
∑

j

(n j,↑ − 1/2)(n j,↓ − 1/2). (4)

For a given energy eigenstate |m〉, the charge and spin current expectation values J ρ
m =

〈m|J ρ |m〉 and J σz
m = 〈m|J σz |m〉, respectively, can be expressed as follows [26]:

J ρ
m = dEm(φ)

d(φ/L)

∣∣∣∣
φ=0

φ = φ↑ = φ↓,

J σz
m = dEm(φ)

d(φ/L)

∣∣∣∣
φ=0

φ = φ↑ = −φ↓.

(5)

The φσ > 0 Hamiltonian (4) remains integrable and can be diagonalized by means of
coordinate BA [9]. One can introduce two generalized SU(2) symmetries for the φσ > 0
case [27]. Since 2η and S remain good quantum numbers, one finds that the BA solution refers
to the LWSs of both the η-spin and spin generalized algebras. Thus, all the energies of the
tower of states such that 2η > [L − N] and 2S > [N↑ − N↓] have the same energy as the
corresponding LWSs. It follows that the BA numbers can be related to the values η and S of
the states of each η-spin and spin tower, respectively. Since the studies of the ensuing section
refer to both LWSs and non-LWSs, here we express the sum rules of the BA numbers in terms
of the good quantum numbers η and S. Moreover, we provide the simplified expressions in
terms of the electronic numbers N and Nσ which correspond to the LWS of each tower only.

The solution of the Hamiltonian (4) by the BA leads to the following equations [9, 28]:

eik j L = eiφ↑
M∏

β=1

sin k j − �β + iu

sin k j − �β − iu
,

ei(φ↓−φ↑)
Nc∏

j=1

�γ − sin k j + iu

�γ − sin k j − iu
= −

M∏

β=1

�γ − �β + i2u

�γ − �β − i2u
.

(6)

Here and throughout this paper u = U/4t , the numbers Nc and M such that 0 � Nc � N and
0 � M � N↓, respectively, are defined below, and � is the spin rapidity [7]. The Takahashi
string hypothesis states that in addition to the real solutions for �γ and k j there are solutions
involving complex k j and �γ values. The spin string � of length n is characterized by [7]

�n j
γ = �n

γ + (n + 1 − 2 j)iu. j = 1, 2, . . . , n, (7)

3
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where �n
γ is the real part of the complex number. The charge k − � string of length n includes

2n k and n � such that

�′n j
γ = �′n

γ + (n + 1 − 2 j)iu, n = 1, 2, . . . , n,

k1
γ = π − sin−1(�′n

γ + niu),

k2
γ = sin−1(�′n

γ + (n − 2)iu),

k3
γ = π − k2

γ ,

k4
γ = sin−1(�′n

γ + (n − 4)iu),

k5
γ = π − k4

γ ,

. . . ,

k2n−2
γ = sin−1(�′n

γ − (n − 2)iu),

k2n−1
γ = π − k2n−2

γ ,

k2n
γ = π − sin−1(�′n

γ − niu).

(8)

By use of equation (7) and (8) in equations (6) we arrive at the following transcendental
equations [28, 29]:

k j L = 2π I j + φ↑ −
∞∑

n=1

Mn∑

β=1

θ

(
sin k j − �n

β

nu

)
−

∞∑

n=1

M ′
n∑

β=1

θ

(
sin k j − �′n

β

nu

)

L(sin−1(�′n
γ + inu) + sin−1(�′n

γ − inu)) = 2π J ′n
γ − n(φ↑ + φ↓)

+
N−2M ′∑

j=1

θ

(
�′n

γ − sin k j

nu

)
+

∑

m,β

�nm

(
�′n

γ − �′m
β

u

)
,

N−2M ′∑

j=1

θ

(
�n

γ − sin k j

nu

)
= 2π J n

γ + n(φ↓ − φ↑) +
∑

m,β

�nm

(
�n

γ − �m
β

u

)
,

(9)

where θ(x) = −2 tan(x) and

�nm(x) = θ

(
x

|n − m|
)

+ 2θ

(
x

|n − m| + 2

)
+ · · · + 2θ

(
x

n + m − 2

)

+ θ

(
x

n + m

)
, for n 
= m

= 2θ
( x

2

)
+ 2θ

( x

4

)
+ · · · + 2θ

(
x

2n − 2

)
+ θ

( x

2n

)
,

for n = m. (10)

Here {I j , J ′n
γ , J n

γ } are the actual quantum numbers whose values define the energy eigenstates
and thus determine the energy and current spectra of the elementary excitations studied in the
ensuing section. Following the notation of Takahashi [7], we introduce the numbers

Mc =
∑

n

nM ′
n, Ms =

∑

n

nMn . (11)

In these expressions Mn and M ′
n are the numbers of spin � strings of length n and charge

k − � strings of length n, respectively. The values of Nc and M are then uniquely defined by
the following sum rules:

Nc = L − 2η − 2Mc, M = Mc + Ms = L

2
− η − S, (12)

4
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which for an LWS of the η-spin and algebras such that 2η = [L − N] and 2S = [N↑ − N↓],
respectively, simplify to

Nc = N − 2Mc, M = N↓. (13)

The above quantum numbers {I j , J ′n
γ , J n

γ } can be integers or half-odd integers (HOIs)
according to the following prescriptions: I j is integer (or HOI) if

∑
m(Mm + M ′

m) is even
(odd); J n

γ is integer (HOI) if Nc − Mn is odd (even); J ′n
γ is integer (HOI) if L − (Nc − M ′

n) is
odd (even). They have values in the following ranges:

I j <
L

2
,

J ′n
γ < 1

2

(
L − N + 2Mc −

∞∑

m=1

tnm M ′
m

)
,

J n
γ < 1

2

(
N − 2Mc −

∞∑

m=1

tnm Mm

)
,

(14)

where tnm = 2 min(n, m) − δnm .
The energy and momentum spectra are given in terms of the BA quantum numbers as

follows:

E = −
Nc∑

j=1

2t cos k j +
∑

n,α

4tR
√

1 − (λ′n
α − inu)2 − U

2

(
Nc + 2Mc − 1

2

)
,

P = 2π

L

(∑

j

I j +
∑

n,α

J n
α

)
+

∑

n,α

(
π − 2π

L
J ′n

α

)
+ π

(
Mc + η − 1

2
[L − N]

)
,

(15)

where R refers to the real part and π(Mc + η − 1
2 [L − N]) simplifies to π Mc for an LWS of

the η-spin algebra.
All energy eigenstates associated with the BA solution are described by different

occupancy configurations of the quantum numbers appearing in the system of coupled
equations given in equation (9). For example, for the ground state there is no complex solution
for equations (6) and I j and Jγ are successive numbers centered around zero. Thus, the
quantum number occupancy configuration for even Nc = N = L and odd Nc/2 corresponds
to

I j = − N − 1

2
,− N − 3

2
, . . . ,

N − 1

2
,

Jγ = − M − 1

2
,− M − 3

2
, . . . ,

M − 1

2
.

(16)

In some of the figures presented in the ensuing section we measure the energy relative to
the ground-state energy. Such a choice corresponds to the following general energy spectrum:

E0 = −
Nc∑

j=1

2t cos k j +
∑

n,α

4tR
√

1 − (λ′n
α − inu)2

− U

2

[
Nc + 2Mc − 1

2

]
− 2μ(Na − N) − 2μ0 H (N↑ − N↓), (17)

where μ is the chemical potential, μ0 the Bohr magneton, and H the magnetic field.
Although the Bethe-ansatz equations (9) refer to L � 1, we have used these equations in

the numerical study of finite-L chains and obtained results for several quantities in excellent
numerical agreement with the known exact values. Thus, in the ensuing section we use
these equations to derive numerically the charge and spin currents carried by the elementary

5
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excitations for finite values of L, as well as their energy spectra. The obtained results are a good
approximation for the corresponding current spectra of the L � 1 quantum problem which the
equations (9) refer to.

3. Current spectra for a finite-size system

3.1. The case of half-filling

The zero-magnetization and half-filling ground state is both a spin and η-spin singlet. Thus,
the simplest elementary excitations are spin-triplet excitations such that (η = 0, S = 1), spin-
singlet excitations such that (η = 0, S = 0) whose energy spectrum is degenerated to that
of the spin-triplet excitations, charge η-spin-triplet excitations such that (η = 1, S = 0),
and charge η-spin-singlet excitations such that (η = 0, S = 0) whose energy spectrum is
degenerated to that of the charge η-spin-triplet excitations. The energy spectra of these four
elementary excitations have been previously studied [30]. For a comparison, we evaluate the
energy spectrum and the charge and spin currents of all the energy eigenstates corresponding
to the above four types of half-filling elementary excitations. The energies considered in this
subsection correspond to the general energy spectrum provided in equation (15).

The half-filling and zero-magnetization ground state considered in this subsection is
characterized by charge and spin distributions given by

ρ0(k) = 1

2π
+ cos k

π

∫ ∞

0

J0(p) cos(p sin k)

1 + eu|p|/2
dp,

σ0(λ) = 1

8πu

∫ π

−π

sech

[
2π

u
(λ − sin k)

]
dk,

(18)

where J0 is the Bessel function of zero order. Following standard BA procedures, the evaluation
of the energy, charge–current, and spin-current spectra studied below involves the use of
corresponding distributions for the elementary excitations.

Spin-triplet excitations. Such elementary excitations are obtained by introducing ‘holes’ in
the spin distribution of the numbers Jγ relative to the ground-state occupancy configuration.
For each value of the excitation momentum and energy there is a spin tower of three S = 1
states, differing in the spin projections 0,±1, but all having the same values,

Nc = N = L, M = L/2 − 1, (19)

and

I j = − N − 2

2
,− N − 4

2
, . . . ,

N

2
,

J 1
γ = − M + 1

2
,− M − 3

2
, . . . ,

M + 1

2
,

(20)

for the BA numbers. Hence, there are two holes λh
1 and λh

2 in the spin distribution. The BA
equations become

k j L = 2π I j + φ↑ − 2
L/2−1∑

β=1

tan−1 sin k j − λβ

u

N∑

j=1

2 tan−1 λγ − sin k j

u
= 2π Jγ + (φ↓ − φ↑) + 2

L/2−1∑

β=1

tan−1 λγ − λβ

2u
.

(21)

6
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Following the usual procedures of BA [7, 28], one then introduces the following charge and
spin distributions:

ρ(k) = 1

2π
+ cos k

∫
K1(sin k − λ)σ(λ) dλ,

σ(λ) + σ h(λ) =
∫

K1(λ − sin k)ρ(k) dk −
∫

K2(λ − λ′)σ (λ′) dλ′,
(22)

where σ h(λ) = [δ(λ − λh
1) + δ(λ − λh

2)]/L and Kn(x) = nu/[π(n2u2 + x2)]. In the presence
of the flux the momentum deviation corresponding to this elementary excitation is given by

�k j L = φ↑ − 2π

L/2−1∑

β=1

K1(sin k j − λβ)(cos k j�k j − �λβ),

2π

N∑

j=1

K1(λγ − sin k j)(�λγ − cos k j�k j) = (φ↓ − φ↑)

+ 2π

L/2−1∑

β=1

K2(λγ − λβ)(�λγ − �λβ).

(23)

Use of equation (22) then yields

�kρ(k) = φ↑
2π L

+
∫

K1(sin k − λ)�λσ(λ) dλ,

�λ[σ(λ) + σ h(λ)] = φ↓ − φ↑
2π L

−
∫

K2(λ − λ′)�λ′σ(λ′) dλ′

+
∫

K1(λ − sin k) cos k�kρ(k) dk.

(24)

The corresponding energy deviation is given by

�E(φ) = 2t L
∫

sin kρ(k)�k dk. (25)

Our next task is the solution of the equations given in (24). Inserting the result obtained for
�kρ(k) into equation (25) we find

�E = − t (φ↓ − φ↑)

8πuL

∫
dk sin k

[
sech

[
π
2u (sin k − λh

1)
]

σ0(λ
h
1)

− sech
[

π
2u (sin k − λh

2)
]

σ0(λ
h
2)

]
, (26)

where we have used the relation �λ  (φ↓ − φ↑)/(4π Lσ0(λ), which was obtained by Fourier
transformation. It then follows that when φ↓ = φ↑ the charge current defined by equation (5)
vanishes.

In the general case, λh > 1, equation (26) can be solved approximately with the result

J σ ≈ tπ

2u

[
tanh

(
πλh

1

2u

)
+ tanh

(
πλh

2

2u

)]
. (27)

Since the momentum carried by the spin elementary excitation has the form q =
2 tan−1 e−λ/2u − π

2 and the quantum number of the charge part changes from half-integer to
integer, which generates a momentum shift π , the spin-current spectrum has the following
form, as was also observed in the antiferromagnetic Heisenberg model [31]:

J σ = tπ

2u
[sin q1 + sin q2],

q = π + q1 + q2, q1, q2 ∈
[
−π

2
,
π

2

]
.

(28)

7
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Figure 1. The half-filling energy spectrum (left) and spin-current spectrum (right) of the spin-triplet
excitations for u = 10, N = L = 66, and M = 33.

0 0.5 1 1.5 2
q/π

0

1

2

3

4

E

0 0.5 1 1.5 2
q/π

-4
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0
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Jσ 

Figure 2. The half-filling energy spectrum (left) and spin-current spectrum (right) of the spin-triplet
excitations for u = 1, N = L = 66, and M = 33.

Here q1 and q2 are the momenta of the two spin-distribution holes and q denotes the total
excitation momentum. In figures 1 and 2 we plot the energy and spin-current spectra of the
spin-triplet excitations for u = 10 and u = 1, respectively. Such spectra were obtained by
solving numerically the BA equations.

The group velocity vσ(ρ)(q) and the effective spin (charge) eσ (ρ) are defined as

vσ(ρ)(q) = dEσ (ρ)(q)

dq
, eσ (ρ) = e

J σ (ρ)(q)

vσ(ρ)(q)
. (29)

In this equation σ and ρ denote the spin current and charge current, respectively, and e = −1
and 1/2 for the charge and spin cases. Thus, the group velocity of a single spin-distribution
hole reads

vσ (q) = − tπ

2u
sin q, (30)

8
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whereas the corresponding effective spin is given by

eσ = − 1
2 . (31)

Note that the total spin current is positive.

Spin-singlet excitations. The second type of elementary spin excitations studied here
corresponds to the spin-singlet excitations whose energy spectrum is degenerated with that
of the spin-triplet excitations considered above. Such excitations have a spin string of length
one. Thus, the BA numbers are given by

M1 = M − 2, M2 = 1, (32)

and

I j = − N − 2

2
,− N − 4

2
, . . . ,

N

2
,

J 1
γ = − M − 1

2
,− M − 3

2
, . . . ,

M − 1

2
J 2

0 = 0.

(33)

It follows that there are again two holes in the spin distribution, λh
1 and λh

2. The BA equations
are given by

k j L = 2π I j + φ↑ − 2
L/2−2∑

β=1

tan−1 sin k j − λβ

u
− 2 tan−1 sin k j − �

2u
,

2
N∑

j=1

tan−1 λγ − sin k j

u
= 2π Jγ + (φ↓ − φ↑) + 2

L/2−2∑

β=1

tan−1 λγ − λβ

2u

+ 2 tan−1 λγ − �

u
+ 2 tan−1 λγ − �

3u

2
N∑

j=1

tan−1 � − sin k j

2u
= 2π J (2)

1 (= 0) + 2(φ↓ − φ↑)

+ 2
L/2−2∑

β

[
tan−1 � − λβ

u
+ tan−1 � − λβ

3u

]
,

(34)

where � denotes the rapidity of the spin string excitation of length two. The deviations of the
charge and spin distributions are such that

�kρ(k) = φ↑
2π L

+
∫

K1(sin k − λ)�λσ(λ) dλ + 1

L
K2(sin k − �)��

�λ[σ(λ) + σ h(λ)] = φ↓ − φ↑
2π L

−
∫

K2(λ − λ′)�λ′σ(λ′) dλ′

+
∫

cos k�kρ(k)K1(λ − sin k) dk − 1

L
[K1(λ − �) + K3(λ − �)]��

��σ2(�) = φ↓ − φ↑
π L

−
∫

[K1(� − λ) + K3(� − λ)]�λσ(λ) dλ

+
∫

cos kK2(� − sin k)�kρ(k) dk

−
∫

[2K2(� − �′) + K4(� − �′)]��σ2 d�.

(35)
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Figure 3. The half-filling energy spectrum (left) and spin-current spectrum (right) of the spin-singlet
excitations for u = 10, N = L = 66, and M = 33.

Here σ2(�
′) = δ(�′ − �)/L and σ h(λ) = [δ(λ − λh

1) + δ(λ − λh
1)]/L. Integrations in the

variables k, λ,� lead to
∫

cos k�kρ(k) = 0
∫

�λσ(λ) dλ + 1

L
�� =

∫
φ↓ − φ↑

4π L
dλ −

∫
�λσ h(λ) dλ,

1

L
�� + 1

2

∫
�λσ(λ) dλ =

∫
φ↓ − φ↑

4π L
dλ.

(36)

Finally, the deviation associated with the spin string excitation of length two has the form

�� = (�λh
1 + �λh

2) +
∫

φ↓ − φ↑
4π

dλ, (37)

where the second term on the right-hand side can be omitted because it does not contribute to
the spin current. Use of this expression in the first equation of (35) leads to

�kρ(k) ≈ φ↑
2π L

+
∫

K1(sin k − λ)�λ[σ + σ h] dλ. (38)

Since σ0(λ) ≈ σ(λ) + σ h(λ), by means of the same procedure as already used for spin-triplet
excitation, we find that to first order the energy deviation induced by the external flux vanishes.
Thus, both the charge and spin currents carried by this type of elementary excitation vanish.

In figures 3 and 4 we plot the energy and spin-current spectra of the spin-singlet excitations
for u = 10 and 1, respectively. The two small features of the spin-current spectrum result from
finite-size effects and disappear in the thermodynamic limit, as shown in figure 5.

We emphasize that, although the group velocity of the two spin-distribution holes of the
spin-singlet excitations is finite, the corresponding effective spin vanishes.

Charge η-spin-triplet excitations. For each value of the excitation momentum and energy
there are three types of such η = 1 elementary excitations, which correspond to the three
values 0,±1 for the η-spin projection. All these excitations have again the same BA numbers,

N = L − 2, M = N/2, (39)

10
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Figure 4. The half-filling energy spectrum (left) and spin-current spectrum (right) of the spin-singlet
excitations for u = 1, N = L = 66, and M = 33.
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Figure 5. Scaling analysis of the maximum current carried by spin-singlet excitations for u = 1
(left) and u = 10 (right) respectively.

and

I j = − L

2
, . . . ,

L

2
− 1,

Jγ = − M − 1

2
, . . . ,

M − 1

2
.

(40)

There are two holes kh
1 and kh

2 in the charge distribution such that

ρh(k) = 1

L
[δ(k − kh

1) + δ(k − kh
2)]. (41)

Thus, the distributions ρ(k) and σ(λ) satisfy the following equations:

ρ(k) + ρh(k) = 1

2π
+ cos k

∫
K1(sin k − λ)σ(λ) dλ

σ(λ) =
∫

K1(λ − sin k)ρ(k) −
∫

K2(λ − λ′)σ (λ′) dλ′.
(42)

The energy deviation corresponding to the two charge-distribution holes reads

�E(φ) = −2t
[
sin kh

1�kh
1 + sin kh

2�kh
2

]
, (43)

11
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Figure 6. The half-filling energy spectrum (left) and charge–current spectrum (right) of the charge
η-spin-triplet excitation for u = 10, N = L = 46, and M = 23.

where the momentum deviation �k is approximately given by

�k ≈ φ↑
2π Lρ0(k)

. (44)

It follows that the charge current spectrum is such that

J ρ = −2t

[
sin kh

1

ρ0(kh
1)

+ sin kh
2

ρ0(kh
2)

]
, (45)

while for kh = −k it reads

J ρ = 2t

[
sin k1

ρ0(k1)
+ sin k2

ρ0(k2)

]
,

k = k1 + k2.

(46)

In turn, the spin current vanishes. In the strong coupling limit, u = U/4t � 1, one has that
ρ0(k)  1/2π and thus the spectrum simplifies to

J ρ ∝ sin k1 + sin k2. (47)

In this case the corresponding energy spectrum can be expressed as the sum of three cosine
functions, in addition to the energy gap. Hence, the velocity of a single charge-distribution
hole simplifies to vρ = −2t sin kh, whereas the effective charge is −e. This corresponds to a
positive current in units of e.

Again, we used the BA equations to calculate the energy, charge–current, and spin-current
spectra for u = 10 and 1. (The spin current vanishes for the charge η-spin-triplet states
considered here.) The energy and charge–current spectra are plotted in figures 6 and 7 for
u = 10 and u = 1, respectively. Note that the charge–current spectra features have a stronger
linear character for u = 1 than for u = 10. We interpret this effect as due to the weak-coupling
peak in the charge distribution as a function of the momentum k. When a hole is created away
from zero momentum it is less affected by the other charges, leading to J ρ ∝ q .

Charge η-spin-singlet excitations. These η = 0 elementary excitations are those whose
energy spectrum is degenerated with that of the charge η-spin-triplet excitations considered

12
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Figure 7. The half-filling energy spectrum (left) and charge–current spectrum (right) of the charge
η-spin-triplet excitation for u = 1, N = L = 46, and M = 23.

above. Such η-spin-singlet excitations contain one charge string of length one. The BA
numbers are then given by

M1 = N

2
− 1, M ′

1 = 1, (48)

and

I j = − N − 1

2
, . . . ,

N − 1

2
,

Jγ = − M1 − 1

2
,− M1 − 3

2
, . . . ,

M1 − 1

2
J ′

1 = 0.

(49)

These excitations involve two holes kh
1 and kh

2 in the charge distribution. The BA equations are
such that

k j L = 2π I j + φ↑ −
L/2−1∑

β=1

2 tan−1 sin k j − λβ

u
− 2 tan−1 sin k j − �

u
,

N−2∑

j=1

2 tan−1 λγ − sin k j

u
= 2π Jγ + (φ↓ − φ↑) +

N/2−1∑

β=1

2 tan−1 λγ − λβ

2u
,

L[sin−1(� + iu) + sin−1(� − iu)] = 2π J ′1
1 − (φ↑ + φ↓) + 2

L−2∑

j=1

tan−1 � − sin k j

u
,

(50)

where � is the rapidity involved in the charge string of length unity. Moreover, we find

�k j(ρ + ρh) = φ↑
2π L

+
∫

K1(sin k − λ)�λσ(λ) dλ + 1

L
K1(sin k − �)��,

�λσ(λ) = φ↓ − φ↑
2π L

+
∫

K1(λ − sin k) cos k�k dk −
∫

K2(λ − λ′)�λ′σ(λ′) dλ′.

��σ ′(�) = −φ↓ + φ↑
2π L

−
∫

K1(� − sin k) cos k�kρ(k) dk

−
∫

K2(� − �′)σ ′(�′) d�′,

(51)

13
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Figure 8. The half-filling energy spectra of charge η-spin-singlet excitation for the strong coupling
u = 1 (left), and weak coupling u = 10 (right).

where σ ′(�′) = δ(�′ − �)/L. Integrations involving the variables λ, k, and � lead to

�� = 1
2 [cos kh

1�kh
1 + cos kh

2�kh
2]. (52)

This is consistent with ρh = [δ(k − kh
1) + δ(k − kh

2)]/L and � = (sin kh
1 + sin kh

2)/2.
The energy of the present elementary excitation is

E = −2t L
∫

cos kρ(k) dk + 4tR
√

1 − (� − iu)2. (53)

Thus, the corresponding energy deviation in the presence of the external flux can be expressed
as

�E(φ) = 2t L
∫

sin k�kρ(k) dk + 4tR (� − iu)��√
1 − (� − iu)2

. (54)

Note that the momentum of the two charge-distribution holes is determined by the value of the
rapidity �. The important point is that their contributions to the charge current cancel in the
thermodynamical limit.

Numerical solution of the BA equations with the quantum-number occupancy
configurations given in equation (49) leads to the energy spectra plotted in figure 8. From
use of equation (5) we could confirm that both the spin and charge carried by these elementary
excitations vanish in the thermodynamical limit [27].

3.2. Half-filling with non-zero magnetization

While the energy spectra plotted in figures 1–8 correspond to the general energy spectrum
given in equation (15), in the figures 9–14 presented below the energy spectra of the elementary
excitations refer to the general spectrum provided in equation (17).

Here we consider that the initial half-filling ground state corresponds to a finite spin
density. That is achieved by the presence of a magnetic field. Thus, for such a ground state
and corresponding elementary excitations one has that M < N/2 and the integration limit of
the spin variable λ changes from ∞ to a finite cut-off. For odd values of M , the distribution
of the corresponding spin quantum numbers is still of the form given in equation (16). The

14
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Figure 9. The half-filling energy spectrum (left) and spin-current spectrum (right) of the spin
excitation with a string of length two for u = 10, N = L = 75, and M = 25.

charge excitations do not change much due to the spin–charge separation. For the spin sector,
however, the excitation spectrum presents qualitative changes.

There are still excitations which increase the value of S by one. However, such excitations
require a minimum finite energy and thus the corresponding excitation energy spectrum has a
gap. The spin distribution of these elementary excitations displays two holes. Moreover, such
elementary excitations carry in general a finite spin current. Additionally, since the integration
limit of λ is now finite, the external flux can shift the whole integration region. This process
also contributes to the spin current. The corresponding current feature is expected to be a linear
function of the momentum q . The same kind of spin-current feature arises now from elementary
excitations involving one spin string of length two. For the case of the zero-magnetization
ground state such excitation is of spin-singlet character. However, in contrast to the zero-
spin case now the two spin-distribution holes contribute to the spin current. Consideration of
elementary excitations whose deviations from the quantum number configuration occupancies
are the same as that of equations (33) for the spin-singlet excitation leads in the case of an initial
ground state with finite spin density to the energy and spin-current spectra plotted in figures 9
and 10 for u = 10 and 1, respectively. Note that now such excitations lead indeed to a finite
value for the spin current.

3.3. Away from half-filling

Finally, let us consider that the initial ground state is metallic and thus refers to an electronic
density away from half-filling. The ground-state spin density is considered to be zero. In this
case, besides the ground state, there also exist real rapidity solutions for some of the elementary
excitations. For simplicity, we still consider the case of N/2 odd but now with N < L. The
simplest elementary excitation away from half-filling corresponds to removing one I j from the
ground-state occupied charge-distribution sector and adding a new one outside such a sector.
Such an excitation has a ‘particle–hole’ character. It is characterized by the following BA
numbers:

{I j } =
{
− N − 1

2
, . . . ,− N − 1

2
+ n − 1,− N − 1

2
+ n + 1, . . . ,

N − 1

2
, In

}
, (55)
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Figure 10. The half-filling energy spectrum (left) and spin-current spectrum (right) of the spin
excitation with a string of length two for u = 1, N = L = 75, and M = 25.
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Figure 11. The quarter-filling energy spectrum (left) and charge current spectrum (right) of a charge
‘particle–hole’ excitation for u = 10, L = 100, N = 50, and M = 25.

where |In| > (N − 1)/2. We consider excitations such that the λ spin distribution remains
unchanged.

In figures 11 and 12 we plot the energy and charge–current spectra of such elementary
excitations for u = 10 and 1, respectively. Note that for strong coupling (u = 10) the charge
current may have negative values whereas for weak coupling (u = 1) it has always positive
values.

In the strong coupling limit the charge BA equation simplifies to

k j L = 2π I j + φ↑. (56)

It follows that the energy deviation can be written as

�E(φ) = 2t
∑

j

sin k j�k j . (57)
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Figure 12. The quarter-filling energy spectrum (left) and charge current spectrum (right) of a charge
‘particle–hole’ excitation for u = 1, L = 100, N = 50, and M = 25.

Furthermore, the current reads

J ρ = 2t[sin(2kF + q) − sin(2kF)], (58)

where 2kF = π N/L denotes the ‘Fermi momentum’ and q the momentum. Note that
equation (58) provides the charge current for an excitation where a charge is removed from
the ‘Fermi point’ and created outside the ground-state ‘Fermi sea’. As long as 2kF > π/2, the
current in the vicinity of 2kF is negative. On the other hand, the effective charge carried by this
excitation is negative.

The contribution to the charge current of the charge-distribution hole excitation is
straightforward to obtain and reads

J ρ

h = 2t[sin 2kF − sin kh], kh ∈ [−2kF, 2kF], (59)

where kh is the momentum of the charge-distribution hole. At 2kF = π/2 it leads to a feature
in the charge current spectrum defined by the function [1 − cos q/2]. Combining the ‘particle’
and ‘hole’ contributions one finds

J ρ
p = 2t[sin(2kF + k) − sin kh]. (60)

The group velocities of the charge ‘particle’ and ‘hole’ are such that

vρ
p = −2t sin kp, v

ρ

h = 2t sin kh. (61)

Hence, the effective charge carried by the ‘particle’ and the ‘hole’ are e(= −1) and −e(= 1),
respectively. We recall that all this analysis applies to the strong coupling limit only.

In turn, in the weak coupling limit the interaction between the charge holes is so weak
in the ‘Fermi sea’ that the charge current is almost a linear function of the momentum. For
the ‘particle’ at quarter-filling, however, since the distribution function ρ(k) becomes a very
narrow peak and the ‘Fermi surface’ is compressed, the charge current changes from negative
to positive.

We have shown above that both the spin and charge currents carried by the charge η-spin-
singlet excitations containing one charge string of length one vanish. However, away from
half-filling the corresponding charge excitations containing one charge string of length one
have different properties. The quantum number occupancy configuration of such elementary
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Figure 13. The quarter-filling energy spectrum (left) and charge–current spectrum (right) of a
charge excitation containing one charge string of length one for u = 10, L = 100, N = 50, and
M = 25.
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Figure 14. The quarter-filling energy spectrum (left) and charge–current spectrum (right) of a
charge excitation containing one charge string of length one for u = 1, L = 100, N = 50, and
M = 25.

excitations is still described by equation (49). We have solved the corresponding BA equations.
The found energy spectrum and charge–current spectrum are plotted in figures 13 and 14 for
u = 10 and 1, respectively. In contrast to the corresponding excitations relative to the half-
filling ground state, the present excitations carry charge but no spin.

4. Concluding remarks

In this paper we have studied the spin and charge currents carried by the elementary excitations
of the 1D Hubbard model. Most of our results refer to half-filling. Both the charge η-spin-
singlet and spin-singlet elementary excitations considered in our study carry no charge and no
spin. Moreover, the spin-triplet excitations considered in this paper carry spin but no charge,
while the charge η-spin-triplet elementary excitations carry charge but no spin.
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Our results reveal that the present quantum liquid is not an ideal insulator for half-filling,
in apparent contradiction to the general predictions of [4]. Indeed, ideal insulating behavior
requires that all half-filling states carry no charge current. However, we note that out of the
three types of charge η-spin-triplet elementary excitations of η-spin projections 0,±1, the states
with projection 0 are indeed half-filling states. Our results show that such charge η-spin-triplet
states carry finite charge current both in the strong and weak coupling limits. According to
the results of [4], this implies a finite value for the charge stiffness D(T ) at finite temperatures
T > 0. This result agrees qualitatively with the studies of [8], which lead to a finite value for
D(T ) at half-filling and T > 0. However, such studies did not take into account the η > 0 and
ηz = 0 states, which carry the charge current at half-filling and lead to D(T ) > 0 for T > 0.
Moreover, both the studies of the present paper and the related studies of [27] provide strong
evidence that the η = 0 and ηz = 0 states considered in [8] do not carry charge current and do
not contribute to D(T ).

The model studied here is integrable, and according to the general arguments of [4] should
display ideal insulating behavior at half-filling. This issue is clarified elsewhere by study of
the microscopic mechanism which is behind the half-filling properties concerning transport of
charge [27].

Finally, our results reveal the occurrence of charge–spin separation at finite energies, since
some of the elementary excitations studied here have an energy gap relative to the initial ground
state. Such a finite-energy charge–spin separation deserves further studies. We note that the
photoemission studies of [2] have detected a spin–charge separation in quasi-1D compounds
for the whole energy bandwidth.
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